ListOfAtomsクラスオブジェクト
A ListOfAtoms
object is a collection of atoms. The ASE
implementation of a ListOfAtoms can be used like this:
>>> from ASE import Atom, ListOfAtoms >>> m = ListOfAtoms([Atom('C', (0, 0, 0)), ... Atom('O', (0, 0, 1.0))])
The first argument to the ListOfAtoms
constructor must be a python
list
of atoms. There are two optional keyword arguments:
cell
: Unit cell size
This can be a sequence of three numbers for an orthorhombic unit cell or three by three numbers for a general unit cell (a sequence of three sequences of three numbers). The default value is ''(1, 1, 1)''.
periodic
: Boundary conditions
The default value is ``False`` - a value of ``True`` would give periodic boundary conditions along all three axes. It is possible to give a sequence of three booleans to specify periodicity along specific axes.
Here is how you could make an infinite gold wire with a bond length of 2.9
>>> from ASE import Atom, ListOfAtoms >>> d = 2.9 >>> L = 10.0 >>> wire = ListOfAtoms([Atom('Au', (L / 2, L / 2, 0))], ... cell=(L, L, d), periodic=(0, 0, 1))
You can also use the following methods to work with the unit cell and the boundary conditions:
GetUnitCell()
:
Returns a three by three array.
SetUnitCell(cell, fix=False)
:
Change the size of the unit cell. If the optional argument ''fix'' is ''True'' (defaults to ''False''), then the positons of the atoms are fixed, otherwise the atoms are moved so that their positions relative to the unit cell are kept.
GetBoundaryConditions()
:
Returns a tuple of three booleans.
Here is how you would do bulk ruthenium (hcp):
>>> from math import sqrt >>> a = 2.70 >>> c = 1.59 * a >>> bulk = ListOfAtoms([Atom('Ru', (0, 0, 0)), ... Atom('Ru', (1 / 3., 1 / 3., 1 / 2.))], ... periodic=True) >>> bulk.SetUnitCell([(a, 0, 0), ... (a / 2, a * sqrt(3) / 2, 0), ... (0, 0, c)])
In addition, an ListOfAtoms
instance has the following methods:
GetKineticEnergy()
:
Returns the total kinetic energy.
Copy()
:
Return a fresh copy. Everything but a possibly attached calculator is copied (next section will explain how to attach a calculator).
Repeat(repeat)
:
The argument ''repeat'' is a sequence of three positive integers (''n1'', ''n2'', ''n3'' - one for each axis), and a copy of the ''ListOfAtoms'' object repeated ''n1 * n2 * n3'' times is returned.
>>> loa1.append(loa2[7]) RuntimeError: Atom belongs to another ListOfAtoms! >>> loa1.append(loa2[7].Copy())
Array methods
It is possible to work with the properties of atoms in a ListOfAtoms by using the methods defined for the individual atoms like this:
>>> m = ListOfAtoms([Atom('O', (0, 0, 0)), ... Atom('H', (0.773, 0.600, 0)), ... Atom('H', (-0.773, 0.600, 0))]) >>> m[1].GetCartesianPosition() array([ 0.773, 0.6 , 0. ]) >>> m[0].SetCartesianPosition((0, -0.1, 0))
However, a ListOfAtoms that conforms to the ASE specification must have a set of array methods to do the same for all atoms in one step:
>>> m.GetCartesianPositions() array([[ 0. , 0. , 0. ], [ 0.773, 0.6 , 0. ], [-0.773, 0.6 , 0. ]]) >>> m.SetCartesianPositions([(0, -0.1, 0), ... (0.773, 0.600, 0), ... (-0.773, 0.600, 0)])
The following methods must be defined:
Get methods | Set methods | type | shape |
---|---|---|---|
GetCartesianPositions | SetCartesianPositions | Float | (n, 3) |
GetCartesianMomenta | SetCartesianMomenta | Float | (n, 3) |
GetCartesianVelocities | SetCartesianVelocities | Float | (n, 3) |
GetCartesianForces | SetCartesianForces | Float | (n, 3) |
GetTags | SetTags | Int | (n,) |
GetAtomicNumbers | SetAtomicNumbers | Int | (n,) |
GetMasses | SetMasses | Float | (n,) |
GetKineticEnergies | Float | (n,) |
|
GetGeneralizedPositions | SetGeneralizedPositions | Float | (n*3,) |
GetGeneralizedForces | SetGeneralizedForces | Float | (n*3,) |
The Get
methods will return Numeric arrays of the given shape (n
is the number of atoms) and type,
and the Set
methods will take anything with the correct shape.
from ASE import ListOfAtoms a = ListOfAtoms([]) a = ListOfAtoms([p1]) a = ListOfAtoms([Atom('H', (0, 0, 0), tag = 1, magmom = 1.0)]) a = ListOfAtoms([p1], cell = (4, 4, 4)) a = ListOfAtoms([p1], cell = [(4, 0, 0), (0, 4, 0), (0, 0, 4)])