連立一次方程式
係数行列(拡大係数行列)
$$ \begin{cases} a_{11}x_{1}+a_{12}x_{2}+\cdots+a_{1n}x_{n}=b_{1}\\ a_{21}x_{1}+a_{22}x_{2}+\cdots+a_{2n}x_{n}=b_{2}\\ \vdots\\ a_{n1}x_{1}+a_{n2}x_{2}+\cdots+a_{nn}x_{n}=b_{n} \end{cases} \Rightarrow \begin{bmatrix} a_{11}&a_{12}&\cdots&a_{1n}&\,&b_{1}\\ a_{21}&a_{22}&\cdots&a_{2n}&\,&b_{2}\\ \vdots&\vdots&\ddots&\vdots&&\vdots\\ a_{n1}&a_{n2}&\cdots&a_{nn}&\,&b_{n} \end{bmatrix} $$
行列の行基本変形
- ある行を何倍かする(0倍以外)
- ある行の何倍かを他の行に加える
- ある行と別の行を交換する
CASE A
$$ \begin{bmatrix} a_{11}&a_{12}&\cdots&a_{1n}&\,&b_{1}\\ a_{21}&a_{22}&\cdots&a_{2n}&\,&b_{2}\\ \vdots&\vdots&\ddots&\vdots&&\vdots\\ a_{n1}&a_{n2}&\cdots&a_{nn}&\,&b_{n} \end{bmatrix} \Rightarrow \begin{bmatrix} 1&\ast&\cdots&\ast&\,&\ast\\ 0&1&\cdots&\ast&\,&\ast\\ \vdots&\vdots&\ddots&\vdots&&\vdots\\ 0&0&\cdots&1&\,&\ast \end{bmatrix} $$
- ただ1組の解をもつ
CASE B
$$ \begin{bmatrix} a_{11}&a_{12}&\cdots&a_{1n}&\,&b_{1}\\ a_{21}&a_{22}&\cdots&a_{2n}&\,&b_{2}\\ \vdots&\vdots&\ddots&\vdots&&\vdots\\ a_{n1}&a_{n2}&\cdots&a_{nn}&\,&b_{n} \end{bmatrix} \Rightarrow \begin{bmatrix} 1&\ast&\cdots&\ast&\,&\ast\\ 0&1&\cdots&\ast&\,&\ast\\ \vdots&\vdots&\ddots&\vdots&&\vdots\\ 0&0&\cdots&0&\,&0 \end{bmatrix} $$
- 解は無数に存在する(解にはパラメータが含まれる)
CASE C
$$ \begin{bmatrix} a_{11}&a_{12}&\cdots&a_{1n}&\,&b_{1}\\ a_{21}&a_{22}&\cdots&a_{2n}&\,&b_{2}\\ \vdots&\vdots&\ddots&\vdots&&\vdots\\ a_{n1}&a_{n2}&\cdots&a_{nn}&\,&b_{n} \end{bmatrix} \Rightarrow \begin{bmatrix} 1&\ast&\cdots&\ast&\,&\ast\\ 0&1&\cdots&\ast&\,&\ast\\ \vdots&\vdots&\ddots&\vdots&&\vdots\\ 0&0&\cdots&0&\,&\ast \end{bmatrix} $$
- 解は存在しない
ただ一組の解が存在する場合
$$
\begin{array}{ll}
&\begin{cases}
x+y=3&\cdots(1)\\
x-y=1&\cdots(2)\\
\end{cases}\\
&\begin{cases}
1x+1y=3&\cdots(1)\\
1x+(-1)y=1&\cdots(2)\\
\end{cases}\\
(2)+(-1)\times(1)\to(2)'&\\
&\begin{cases}
1x+1y=3&\cdots(1)\\
0x+(-2)y=-2&\cdots(2)'\\
\end{cases}\\
(2)'\div(-2)\to(2)''&\\
&\begin{cases}
1x+1y=3&\cdots(1)\\
0x+1y=1&\cdots(2)''\\
\end{cases}\\
(1)+(-1)\times(2)''\to(1)'&\\
\end{array}
$$