文書の過去の版を表示しています。
逆行列
定義
正方行列$A$に対して、 $$XA=I $$ を満たすような正方行列$X$が存在するとき、$X$を$A$の逆行列とよび、$$X=A^{-1}$$と書く。
$$ A=\begin{bmatrix} a_{11}&a_{12}&\cdots&a_{1n}\\ a_{21}&a_{22}&\cdots&a_{2n}\\ \vdots&\vdots&\ddots&\vdots\\ a_{n1}&a_{n2}&\cdots&a_{nn} \end{bmatrix} $$
行列の行基本変形
- ある行を何倍かする(0倍以外)
- ある行の何倍かを他の行に加える
- ある行と別の行を交換する
→ 基本行列を左から掛け算する
CASE A
- $\mathrm{rank}A=n$のとき、適当な基本行列$R_1$, $R_2$, $\cdots$, $R_M$を用いて、
$$ \begin{bmatrix} a_{11}&a_{12}&\cdots&a_{1n}\\ a_{21}&a_{22}&\cdots&a_{2n}\\ \vdots&\vdots&\ddots&\vdots\\ a_{n1}&a_{n2}&\cdots&a_{nn} \end{bmatrix} \Rightarrow \begin{bmatrix} 1&0&\cdots&0\\ 0&1&\cdots&0\\ \vdots&\vdots&\ddots&\vdots\\ 0&0&\cdots&1 \end{bmatrix} $$
- ただ1組の解をもつ
CASE A
$$ \begin{bmatrix} a_{11}&a_{12}&\cdots&a_{1n}&\,&b_{1}\\ a_{21}&a_{22}&\cdots&a_{2n}&\,&b_{2}\\ \vdots&\vdots&\ddots&\vdots&&\vdots\\ a_{n1}&a_{n2}&\cdots&a_{nn}&\,&b_{n} \end{bmatrix} \Rightarrow \begin{bmatrix} 1&\ast&\cdots&\ast&\,&\ast\\ 0&1&\cdots&\ast&\,&\ast\\ \vdots&\vdots&\ddots&\vdots&&\vdots\\ 0&0&\cdots&0&\,&0 \end{bmatrix} $$
- 解は無数に存在する(解にはパラメータが含まれる)