行列式
定義
存在証明等がないので厳密な定義ではないが、実用上一番すっきりするのは、
- 多重線形性
- 交代性
- $|E|=1$ (単位行列の行列式は$1$)
を定義とするもの。
多重線形性
線形性
- $\left|\begin{array}{cccc}a_{1}+b_{1}&a_{2}+b_{2}&a_{3}+b_{3}\\c_{21}&c_{22}&c_{23}\\c_{31}&c_{32}&c_{33}\end{array}\right|=\left|\begin{array}{cccc}a_{1}&a_{2}&a_{3}\\c_{21}&c_{22}&c_{23}\\c_{31}&c_{32}&c_{33}\end{array}\right|+\left|\begin{array}{cccc}b_{1}&b_{2}&b_{3}\\c_{21}&c_{22}&c_{23}\\c_{31}&c_{32}&c_{33}\end{array}\right|$
- $\left|\begin{array}{cccc}ka_{1}&ka_{2}&ka_{3}\\c_{21}&c_{22}&c_{23}\\c_{31}&c_{32}&c_{33}\end{array}\right|=k\left|\begin{array}{cccc}a_{1}&a_{2}&a_{3}\\c_{21}&c_{22}&c_{23}\\c_{31}&c_{32}&c_{33}\end{array}\right|$
が、どの行についてもどの列についても成り立つ。
交代性
二つの行、もしくは二つの列を入れ替えると符号が逆転する。
- $\left|\begin{array}{cccc}a_{1}&a_{2}&a_{3}\\b_{1}&b_{2}&b_{3}\\c_{1}&c_{2}&c_{3}\end{array}\right|=-\left|\begin{array}{cccc}b_{1}&b_{2}&b_{3}\\a_{1}&a_{2}&a_{3}\\c_{1}&c_{2}&c_{3}\end{array}\right|$
行列式の性質
同じ行があると零になる
交代性の式、 $$\left|\begin{array}{cccc}a_{1}&a_{2}&a_{3}\\b_{1}&b_{2}&b_{3}\\c_{1}&c_{2}&c_{3}\end{array}\right|=-\left|\begin{array}{cccc}b_{1}&b_{2}&b_{3}\\a_{1}&a_{2}&a_{3}\\c_{1}&c_{2}&c_{3}\end{array}\right|$$ で$\left[\begin{array}{ccc}a_{1}&a_{2}&a_{3}\end{array}\right]=\left[\begin{array}{ccc}b_{1}&b_{2}&b_{3}\end{array}\right]$ とおくと、 $$\left|\begin{array}{cccc}b_{1}&b_{2}&b_{3}\\b_{1}&b_{2}&b_{3}\\c_{1}&c_{2}&c_{3}\end{array}\right|=-\left|\begin{array}{cccc}b_{1}&b_{2}&b_{3}\\b_{1}&b_{2}&b_{3}\\c_{1}&c_{2}&c_{3}\end{array}\right|$$ これが成立するためには、 $$\left|\begin{array}{cccc}b_{1}&b_{2}&b_{3}\\b_{1}&b_{2}&b_{3}\\c_{1}&c_{2}&c_{3}\end{array}\right|=0$$
すべて0の行があると行列式は0
$$\left|\begin{array}{cccc}ka_{1}&ka_{2}&ka_{3}\\c_{21}&c_{22}&c_{23}\\c_{31}&c_{32}&c_{33}\end{array}\right|=k\left|\begin{array}{cccc}a_{1}&a_{2}&a_{3}\\c_{21}&c_{22}&c_{23}\\c_{31}&c_{32}&c_{33}\end{array}\right|$$ に $k=0$を代入すると、 $$\left|\begin{array}{cccc}0&0&0\\c_{21}&c_{22}&c_{23}\\c_{31}&c_{32}&c_{33}\end{array}\right|=0$$
ある行に別の行の定数倍を加えても値は変化しない
第2行の$k$倍を第1行に加えた行列の行列式を考えると、 $$\begin{align} \left|\begin{array}{cccc}a_{1}+kb_{1}&a_{2}+kb_{2}&a_{3}+kb_{3}\\b_{1}&b_{2}&b_{3}\\c_{1}&c_{2}&c_{3}\end{array}\right| &=\left|\begin{array}{cccc}a_{1}&a_{2}&a_{3}\\b_{1}&b_{2}&b_{3}\\c_{1}&c_{2}&c_{3}\end{array}\right| +\left|\begin{array}{cccc}kb_{1}&kb_{2}&kb_{3}\\b_{1}&b_{2}&b_{3}\\c_{1}&c_{2}&c_{3}\end{array}\right|\\ &=\left|\begin{array}{cccc}a_{1}&a_{2}&a_{3}\\b_{1}&b_{2}&b_{3}\\c_{1}&c_{2}&c_{3}\end{array}\right| +k\left|\begin{array}{cccc}b_{1}&b_{2}&b_{3}\\b_{1}&b_{2}&b_{3}\\c_{1}&c_{2}&c_{3}\end{array}\right|\\ &=\left|\begin{array}{cccc}a_{1}&a_{2}&a_{3}\\b_{1}&b_{2}&b_{3}\\c_{1}&c_{2}&c_{3}\end{array}\right| \end{align} $$ したがって、 $$ \left|\begin{array}{cccc}a_{1}&a_{2}&a_{3}\\b_{1}&b_{2}&b_{3}\\c_{1}&c_{2}&c_{3}\end{array}\right| = \left|\begin{array}{cccc}a_{1}+kb_{1}&a_{2}+kb_{2}&a_{3}+kb_{3}\\b_{1}&b_{2}&b_{3}\\c_{1}&c_{2}&c_{3}\end{array}\right| $$