Loading [MathJax]/jax/output/CommonHTML/jax.js
SST Lab Dokuwiki Header header picture

ユーザ用ツール

サイト用ツール


lectures:台形公式の誤差

文書の過去の版を表示しています。


台形公式の誤差

1

区間[a,b]N分割した標本点をxk=a+hkとおく、ただし、hは分割幅で h=baN。ここで、x0=axN=bであることに注意。

また、 I0baf(x)dx=N1k=0xk+1xkf(x)dxInbaf(n)(x)dx=f(n1)(b)f(n1)(a) と定義する。

f(x)x=xkの周りでテーラー展開したものを[xk,xk+1]で積分し、和をとると、 f(x)=f(xk)+n=11n!f(n)(xk)(xxk)nxk+1xkf(x)dx=f(xk)(xkxk+1)+n=11n!f(n)(xk)xk+1xk(xxk)ndx=hf(xk)+n=1hn+1(n+1)!f(n)(xk)I0=hN1k=0f(xk)+n=1hn+1(n+1)!N1k=0f(n)(xk) 同様にf(x)x=xk+1の周りでテーラー展開したものを[xk,xk+1]で積分し、和をとると、

I0=hN1k=0f(xk+1)n=1(h)n+1(n+1)!N1k=0f(n)(xk+1)

2

和をとる変数をそろえると、

I0=hN1k=0f(xk)+n=1hn(n+1)!(hN1k=0f(n)(xk))I0=hNk=1f(xk)+n=1hn(n+1)!((1)nhNk=1f(n)(xk))

二式の平均をとると、12() I0=h2(N1k=0f(xk)+Nk=1f(xk))+n=1hn(n+1)!h2(N1k=0f(n)(xk)+(1)nNk=1f(n)(xk))

n=2m1のとき、 N1k=0f(n)(xk)+(1)nNk=1f(n)(xk)=N1k=0f(2m1)(xk)Nk=1f(2m1)(xk)=f(2m1)(x0)f(2m1)(xN)=(f(2m1)(b)f(2m1)(a))=baf(2m)(x)dx=I2m

n=2mのとき、 h2(N1k=0f(n)(xk)+(1)nNk=1f(n)(xk))=h2(N1k=0f(2m)(xk)+Nk=1f(2m)(xk))=h2(f(2m)(x0)+2N1k=1f(2m)(xk)+f(2m)(xN))=h(f(2m)(a)2+N1k=1f(2m)(xk)+f(2m)(b)2)T2m

I0=T0m=1h2m1(2m)!h2I2m+m=1h2m(2m+1)!T2m

3

I0=T0m=1h2m2(2m)!I2m+m=1h2m(2m+1)!T2mI2=T2m=1h2m2(2m)!I2(m+)+m=1h2m(2m+1)!T2(m+)T2=I2+m=1h2m2(2m)!I2(m+)m=1h2m(2m+1)!T2(m+)

I0=T0h22(2!)I2+h23!T2h42(4!)I4+h45!T4h62(6!)I6+h67!T6T2=I2+h22(2!)I4h23!T4+h42(4!)I6h45!T6+T4=I4+h42(2!)I6h23!T6+

()

I0=T0h22(2!)I2+h23!(I2+h22(2!)I4h23!T4+h42(4!)I6h45!T6+)h42(4!)I4+h45!T4h62(6!)I6+h67!T6=T0h212I2+h448I47h4360T4+h6360I66h67!T6=T0h22(2!)I2h23!I2+h23!h22(2!)I4h23!h23!T4+h23!h42(4!)I6h23!h45!T6h42(4!)I4+h45!T4h62(6!)I6+h67!T6

T2=I2+m=1h2m2(2m)!I2(m+)m=1h2m(2m+1)!T2(m+)

2

f(x)=f(xk+1)+n=11n!f(n)(xk+1)(xxk+1)n

xk+1xkf(x)dx=f(xk+1)hn=11(n+1)!f(n)(xk+1)(h)n+1

I(f)=hN1k=0f(xk+1)+n=1(h)n(n+1)!hN1k=0f(n)(xk+1)=hNk=1f(xk)+n=1(h)n(n+1)!hNk=1f(n)(xk)=hN1k=0f(xk)hf(x0)+hf(xN)+n=1(h)n(n+1)!{hN1k=0f(n)(xk)hf(n)(x0)+hf(n)(xN)}

I(f)=Rh(f)+n=1hn(n+1)!Rh(f(n))I(f)=Rh(f)+h(f(b)f(a))+n=1(h)n(n+1)!{Rh(f(n))+h(f(n)(b)f(n)(a))}

I(f)=Rh(f)+m=1h2m1(2m)!Rh(f(2m1))+m=1h2m(2m+1)!Rh(f(2m))I(f)=Rh(f)+h(f(b)f(a))m=1h2m1(2m)!{Rh(f(2m1))+h(f(2m1)(b)f(2m1)(a))}+m=1h2m(2m+1)!{Rh(f(2m))+h(f(2m)(b)f(2m)(a))}

I(f)=Rh(f)+h2(f(b)f(a))m=1h2m1(2m)!{h2(f(2m1)(b)f(2m1)(a))}+m=1h2m(2m+1)!{Rh(f(2m))+h2(f(2m)(b)f(2m)(a))}

3

Th(f)Rh(f)+h2(f(b)f(a))I(f(n))=f(n1)(b)f(n1)(a)

I(f)=Th(f)m=1h2m(2m)!12I(f(2m))+m=1h2m(2m+1)!Th(f(2m))

I(f)=Th(f)h22!12I(f(2))+h23!Th(f(2))h44!12I(f(4))+h45!Th(f(4))h66!12I(f(6))+h47!Th(f(6))+h2m(2m)!12I(f(2m))+h2m(2m+1)!Th(f(2m))+0=h23!I(f(2))h23!Th(f(2))+h23!h22!12I(f(4))h23!h23!Th(f(4))+h23!h44!12I(f(6))h23!h45!Th(f(6))+0=h23!I(f(2))h23!Th(f(2))+h44!I(f(4))h43!2Th(f(4))+h63!4!2I(f(6))h63!5!Th(f(6))+ I(f)=Th(f)h22!16I(f(2))+h44!12I(f(4))+h43!(12016)Th(f(4))+h63!4!2I(f(6))h66!12I(f(6))+h47!Th(f(6))h63!5!Th(f(6))++h2m(2m)!12I(f(2m))+h2m(2m+1)!Th(f(2m))+

lectures/台形公式の誤差.1668848442.txt.gz · 最終更新: 2022/11/19 18:00 by kimi

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki