SST Lab Dokuwiki Header header picture

ユーザ用ツール

サイト用ツール


seminar:plot_curvefit

差分

このページの2つのバージョン間の差分を表示します。

この比較画面へのリンク

両方とも前のリビジョン前のリビジョン
次のリビジョン
前のリビジョン
seminar:plot_curvefit [2019/10/10 12:58] – [Curve Fit Inspector] kimiseminar:plot_curvefit [2022/08/23 13:34] (現在) – 外部編集 127.0.0.1
行 32: 行 32:
 RMSD: Root mean square deviation of the last cycle: RMSD: Root mean square deviation of the last cycle:
  
 +$$
 +R.M.S.D. =\sqrt{\frac{1}{N}\sum_{i=1}^{N}\left\{y_i-f(x_i)\right\}^2}
 +$$
 Chi²: Chi²:
 $$\chi^2$$ $$\chi^2$$
行 54: 行 57:
 column in a previous row column in a previous row
 Examples: 284 1234~ 10.7~0.2 1-2.3 5*0.12 Examples: 284 1234~ 10.7~0.2 1-2.3 5*0.12
 +
 +
 +Plot functions which allow mathematical expressions supports the following functions:
 +
 +|''+, -, *, /''| arithmetic operations|
 +%, mod modulo
 +( ) grouping
 +^, ** power
 +
 +rad(x), deg(x) conversion between radians and degrees
 +sin(x),cos(x),tan(x) trigonometric functions
 +asin(x),acos(x),atan(x) inverse trigonometric functions
 +sinh(x),cosh(x),tanh(x) hyperbolic functions
 +rnd(h) random number (h = height)
 +ln(x),log(x) natural and logarithm to base 10
 +sqrt(x) square root
 +cbrt(x) cubic root
 +frac(x) returns the fraction of x
 +int(x) returns the integer of x
 +round(x;n) round up and down to the nth place on the right of the decimal point
 +gau(x;x0;a;w) Gauss (x0 = position, a = amplitude, w = width)
 +lor(x;x0;a;w) Lorentz (x0 = position, a = amplitude, w = width)
 +galo(x;x0;a;w;r) Gauss-Lorentz (x0 = position, a = amplitude, w = width, r =Gauss-Lorentz ratio (1.0=pure Gauss,0.0 = pure Lorentz))
 +tail(x;x0;a;w;r;t) Gauss-Lorentz with exponential Tail (x0 = position, a = amplitude, w = width, r = Gauss-Lorentz ratio(1.0=pure Gauss,0.0 = pure Lorentz)), t = tail exponent factor
 +j0(x), j1(x), jn(x;n) bessel functions
 +y0(x), y1(x), yn(x;n) bessel functions
 +pi 3.14159265359
 +e 2.71828182846
 +xval(b;i) x value of point i in buffer b
 +yval(b;i) y value of point i in buffer b
 +xerr(b;i) x error value of point i in buffer b
 +yerr(b;i) y error value of point i in buffer b
 +xnval(b;i) normalized x value (0.0-1.0) of point i in buffer b
 +ynval(b;i) normalized y value (0.0-1.0) of point i in buffer b
 +xnerr(b;i) normalized x error value (0.0-1.0) of point i in buffer b
 +ynerr(b;i) normalized y error value (0.0-1.0) of point i in buffer b
 +xvf(b) x value of the first point in buffer b
 +xvl(b) x value of the last point in buffer b
 +yvf(b) y value of the first point in buffer b
 +yvl(b) y value of the last point in buffer b
 +xmin(b) minimum x value in buffer b
 +xmax(b) maximum x value in buffer b
 +ymin(b) minimum y value in buffer b
 +ymax(b) maximum y value in buffer b
 +exmin(b) minimum x error value in buffer b
 +exmax(b) maximum x error value in buffer b
 +eymin(b) minimum y error value in buffer b
 +eymax(b) maximum y error value in buffer b
 +txmin minimum x value over all buffers
 +txmax maximum x value over all buffers
 +tymin minimum y value over all buffers
 +tymax maximum y value over all buffers
 +vxmin(b) minimum x value over all visible buffer
 +vxmax(b) maximum x value over all visible buffer
 +vymin(b) minimum y value over all visible buffer
 +vymax(b) maximum y value over all visible buffer
 +points(b) number of points in buffer b
 +xpoint(v;a) x screen coordinate of v (a can be 1 for the first or 2 for the second axis).
 +xvalue(v;a) x value of the screen coordinate v (a can be 1 for the first or 2 for the second axis).
 +ypoint(v;a) y screen coordinate of v (a can be 1 for the first or 2 for the second axis).
 +yvalue(v;a) y value of the screen coordinate v (a can be 1 for the first or 2 for the second axis).
 +findx(v;b) x value which depends to y in buffer b. If there are more than one it returns the first it found.
 +findy(v;b) y value which depends to x in buffer b. If there are more than one it returns the first it found.
 +fnx(v;b) normalized x value (0.0-1.0) which depends to y in buffer b. If there are more than one it returns the first it found.
 +fny(v;b) normalized y value (0.0-1.0) which depends to x in buffer b. If there are more than one it returns the first it found.
 +
 +
 ===== Special Functions ===== ===== Special Functions =====
  
 The fit function supports some special functions. These functions are easy to use and a little bit faster than free defined functions. The special functions can not be used together with other expressions in one row. The fit function supports some special functions. These functions are easy to use and a little bit faster than free defined functions. The special functions can not be used together with other expressions in one row.
-GL (Gauss-Lorentz mix curve)+==== GL (Gauss-Lorentz mix curve) ==== 
 A = position (x0) A = position (x0)
 B = height (I0) B = height (I0)
行 63: 行 134:
 D = Gauss-Lorentz ratio ( M ,1.0=pure Gauss, 0.0 = pure Lorentz) D = Gauss-Lorentz ratio ( M ,1.0=pure Gauss, 0.0 = pure Lorentz)
 E = unused E = unused
-DS (Doniach-Sunjic curve) +==== DS (Doniach-Sunjic curve) ==== 
-= position (x0+$$ 
-height (l0) +\displaystyle I(E)={\frac {\Gamma (1-\alpha )}{[(E-E_{0})^{2}+\gamma ^{2}]^{(1-\alpha )/2}}}\cos \left\lbrace {\frac {\pi \alpha }{2}}+(1-\alpha )\arctan \left[{\frac {E-E_{0}}{\gamma }}\right]\right\rbrace 
-C width ( γ, Lorentzian FWHM) +$$ 
-D = Anderson's exponent ( α, -0.5 ... 0.5) +|A| position | $E_0$| 
-E = unused +|Bheight |$l0$| 
-ET (Gauss-Lorentz mix curve with exponential Tail)+|Cwidth |( γ, Lorentzian FWHM)| 
 +|DAnderson's exponent ( α, -0.5 ... 0.5)| 
 +|Eunused | | 
 +==== ET (Gauss-Lorentz mix curve with exponential Tail) ==== 
 A = position (x0) A = position (x0)
 B = height (I0) B = height (I0)
行 75: 行 150:
 D = Gauss-Lorentz ratio ( M ,1.0=pure Gauss, 0.0 = pure Lorentz) D = Gauss-Lorentz ratio ( M ,1.0=pure Gauss, 0.0 = pure Lorentz)
 E = tail exponent factor ( α, -infinity - +infinity) E = tail exponent factor ( α, -infinity - +infinity)
-GL* (Gauss convoluted Lorentz curve)+==== GL* (Gauss convoluted Lorentz curve) ==== 
 A = position A = position
 B = height B = height
行 81: 行 157:
 D = Gauss-Lorentz ratio (must be set to 0.0) D = Gauss-Lorentz ratio (must be set to 0.0)
 E = Gauss FWHM (0 - +infinity) E = Gauss FWHM (0 - +infinity)
-DS* (Gauss convoluted Doniach-Sunjic curve)+==== DS* (Gauss convoluted Doniach-Sunjic curve) ==== 
 A = position A = position
 B = height B = height
seminar/plot_curvefit.1570679911.txt.gz · 最終更新: 2022/08/23 13:34 (外部編集)

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki