seminar:plot_curvefit
差分
このページの2つのバージョン間の差分を表示します。
両方とも前のリビジョン前のリビジョン次のリビジョン | 前のリビジョン | ||
seminar:plot_curvefit [2019/10/10 12:58] – [Curve Fit Inspector] kimi | seminar:plot_curvefit [2022/08/23 13:34] (現在) – 外部編集 127.0.0.1 | ||
---|---|---|---|
行 32: | 行 32: | ||
RMSD: Root mean square deviation of the last cycle: | RMSD: Root mean square deviation of the last cycle: | ||
+ | $$ | ||
+ | R.M.S.D. =\sqrt{\frac{1}{N}\sum_{i=1}^{N}\left\{y_i-f(x_i)\right\}^2} | ||
+ | $$ | ||
Chi²: | Chi²: | ||
$$\chi^2$$ | $$\chi^2$$ | ||
行 54: | 行 57: | ||
column in a previous row | column in a previous row | ||
Examples: 284 1234~ 10.7~0.2 1-2.3 5*0.12 | Examples: 284 1234~ 10.7~0.2 1-2.3 5*0.12 | ||
+ | |||
+ | |||
+ | Plot functions which allow mathematical expressions supports the following functions: | ||
+ | |||
+ | |'' | ||
+ | %, mod modulo | ||
+ | ( ) grouping | ||
+ | ^, ** power | ||
+ | |||
+ | rad(x), deg(x) conversion between radians and degrees | ||
+ | sin(x), | ||
+ | asin(x), | ||
+ | sinh(x), | ||
+ | rnd(h) random number (h = height) | ||
+ | ln(x), | ||
+ | sqrt(x) square root | ||
+ | cbrt(x) cubic root | ||
+ | frac(x) returns the fraction of x | ||
+ | int(x) returns the integer of x | ||
+ | round(x; | ||
+ | gau(x; | ||
+ | lor(x; | ||
+ | galo(x; | ||
+ | tail(x; | ||
+ | j0(x), j1(x), jn(x; | ||
+ | y0(x), y1(x), yn(x; | ||
+ | pi 3.14159265359 | ||
+ | e 2.71828182846 | ||
+ | xval(b;i) x value of point i in buffer b | ||
+ | yval(b;i) y value of point i in buffer b | ||
+ | xerr(b;i) x error value of point i in buffer b | ||
+ | yerr(b;i) y error value of point i in buffer b | ||
+ | xnval(b; | ||
+ | ynval(b; | ||
+ | xnerr(b; | ||
+ | ynerr(b; | ||
+ | xvf(b) x value of the first point in buffer b | ||
+ | xvl(b) x value of the last point in buffer b | ||
+ | yvf(b) y value of the first point in buffer b | ||
+ | yvl(b) y value of the last point in buffer b | ||
+ | xmin(b) minimum x value in buffer b | ||
+ | xmax(b) maximum x value in buffer b | ||
+ | ymin(b) minimum y value in buffer b | ||
+ | ymax(b) maximum y value in buffer b | ||
+ | exmin(b) minimum x error value in buffer b | ||
+ | exmax(b) maximum x error value in buffer b | ||
+ | eymin(b) minimum y error value in buffer b | ||
+ | eymax(b) maximum y error value in buffer b | ||
+ | txmin minimum x value over all buffers | ||
+ | txmax maximum x value over all buffers | ||
+ | tymin minimum y value over all buffers | ||
+ | tymax maximum y value over all buffers | ||
+ | vxmin(b) minimum x value over all visible buffer | ||
+ | vxmax(b) maximum x value over all visible buffer | ||
+ | vymin(b) minimum y value over all visible buffer | ||
+ | vymax(b) maximum y value over all visible buffer | ||
+ | points(b) number of points in buffer b | ||
+ | xpoint(v; | ||
+ | xvalue(v; | ||
+ | ypoint(v; | ||
+ | yvalue(v; | ||
+ | findx(v; | ||
+ | findy(v; | ||
+ | fnx(v; | ||
+ | fny(v; | ||
+ | |||
+ | |||
===== Special Functions ===== | ===== Special Functions ===== | ||
The fit function supports some special functions. These functions are easy to use and a little bit faster than free defined functions. The special functions can not be used together with other expressions in one row. | The fit function supports some special functions. These functions are easy to use and a little bit faster than free defined functions. The special functions can not be used together with other expressions in one row. | ||
- | GL (Gauss-Lorentz mix curve) | + | ==== GL (Gauss-Lorentz mix curve) |
A = position (x0) | A = position (x0) | ||
B = height (I0) | B = height (I0) | ||
行 63: | 行 134: | ||
D = Gauss-Lorentz ratio ( M ,1.0=pure Gauss, 0.0 = pure Lorentz) | D = Gauss-Lorentz ratio ( M ,1.0=pure Gauss, 0.0 = pure Lorentz) | ||
E = unused | E = unused | ||
- | DS (Doniach-Sunjic curve) | + | ==== DS (Doniach-Sunjic curve) |
- | A = position | + | $$ |
- | B = height | + | \displaystyle I(E)={\frac {\Gamma |
- | C = width ( γ, Lorentzian FWHM) | + | $$ |
- | D = Anderson' | + | |A| position | $E_0$| |
- | E = unused | + | |B| height |
- | ET (Gauss-Lorentz mix curve with exponential Tail) | + | |C| width |( γ, Lorentzian FWHM)| |
+ | |D| Anderson' | ||
+ | |E| unused | ||
+ | ==== ET (Gauss-Lorentz mix curve with exponential Tail) ==== | ||
A = position (x0) | A = position (x0) | ||
B = height (I0) | B = height (I0) | ||
行 75: | 行 150: | ||
D = Gauss-Lorentz ratio ( M ,1.0=pure Gauss, 0.0 = pure Lorentz) | D = Gauss-Lorentz ratio ( M ,1.0=pure Gauss, 0.0 = pure Lorentz) | ||
E = tail exponent factor ( α, -infinity - +infinity) | E = tail exponent factor ( α, -infinity - +infinity) | ||
- | GL* (Gauss convoluted Lorentz curve) | + | ==== GL* (Gauss convoluted Lorentz curve) |
A = position | A = position | ||
B = height | B = height | ||
行 81: | 行 157: | ||
D = Gauss-Lorentz ratio (must be set to 0.0) | D = Gauss-Lorentz ratio (must be set to 0.0) | ||
E = Gauss FWHM (0 - +infinity) | E = Gauss FWHM (0 - +infinity) | ||
- | DS* (Gauss convoluted Doniach-Sunjic curve) | + | ==== DS* (Gauss convoluted Doniach-Sunjic curve) |
A = position | A = position | ||
B = height | B = height |
seminar/plot_curvefit.1570679911.txt.gz · 最終更新: 2022/08/23 13:34 (外部編集)