seminar:plot_curvefit
差分
このページの2つのバージョン間の差分を表示します。
| 次のリビジョン | 前のリビジョン | ||
| seminar:plot_curvefit [2019/10/10 12:57] – 作成 kimi | seminar:plot_curvefit [2022/08/23 13:34] (現在) – 外部編集 127.0.0.1 | ||
|---|---|---|---|
| 行 32: | 行 32: | ||
| RMSD: Root mean square deviation of the last cycle: | RMSD: Root mean square deviation of the last cycle: | ||
| + | $$ | ||
| + | R.M.S.D. =\sqrt{\frac{1}{N}\sum_{i=1}^{N}\left\{y_i-f(x_i)\right\}^2} | ||
| + | $$ | ||
| Chi²: | Chi²: | ||
| + | $$\chi^2$$ | ||
| sigma is the error of your data. If your data set doesn' | sigma is the error of your data. If your data set doesn' | ||
| 行 53: | 行 57: | ||
| column in a previous row | column in a previous row | ||
| Examples: 284 1234~ 10.7~0.2 1-2.3 5*0.12 | Examples: 284 1234~ 10.7~0.2 1-2.3 5*0.12 | ||
| - | Special Functions | + | |
| + | |||
| + | Plot functions which allow mathematical expressions supports the following functions: | ||
| + | |||
| + | |'' | ||
| + | %, mod modulo | ||
| + | ( ) grouping | ||
| + | ^, ** power | ||
| + | |||
| + | rad(x), deg(x) conversion between radians and degrees | ||
| + | sin(x), | ||
| + | asin(x), | ||
| + | sinh(x), | ||
| + | rnd(h) random number (h = height) | ||
| + | ln(x), | ||
| + | sqrt(x) square root | ||
| + | cbrt(x) cubic root | ||
| + | frac(x) returns the fraction of x | ||
| + | int(x) returns the integer of x | ||
| + | round(x; | ||
| + | gau(x; | ||
| + | lor(x; | ||
| + | galo(x; | ||
| + | tail(x; | ||
| + | j0(x), j1(x), jn(x; | ||
| + | y0(x), y1(x), yn(x; | ||
| + | pi 3.14159265359 | ||
| + | e 2.71828182846 | ||
| + | xval(b;i) x value of point i in buffer b | ||
| + | yval(b;i) y value of point i in buffer b | ||
| + | xerr(b;i) x error value of point i in buffer b | ||
| + | yerr(b;i) y error value of point i in buffer b | ||
| + | xnval(b; | ||
| + | ynval(b; | ||
| + | xnerr(b; | ||
| + | ynerr(b; | ||
| + | xvf(b) x value of the first point in buffer b | ||
| + | xvl(b) x value of the last point in buffer b | ||
| + | yvf(b) y value of the first point in buffer b | ||
| + | yvl(b) y value of the last point in buffer b | ||
| + | xmin(b) minimum x value in buffer b | ||
| + | xmax(b) maximum x value in buffer b | ||
| + | ymin(b) minimum y value in buffer b | ||
| + | ymax(b) maximum y value in buffer b | ||
| + | exmin(b) minimum x error value in buffer b | ||
| + | exmax(b) maximum x error value in buffer b | ||
| + | eymin(b) minimum y error value in buffer b | ||
| + | eymax(b) maximum y error value in buffer b | ||
| + | txmin minimum x value over all buffers | ||
| + | txmax maximum x value over all buffers | ||
| + | tymin minimum y value over all buffers | ||
| + | tymax maximum y value over all buffers | ||
| + | vxmin(b) minimum x value over all visible buffer | ||
| + | vxmax(b) maximum x value over all visible buffer | ||
| + | vymin(b) minimum y value over all visible buffer | ||
| + | vymax(b) maximum y value over all visible buffer | ||
| + | points(b) number of points in buffer b | ||
| + | xpoint(v; | ||
| + | xvalue(v; | ||
| + | ypoint(v; | ||
| + | yvalue(v; | ||
| + | findx(v; | ||
| + | findy(v; | ||
| + | fnx(v; | ||
| + | fny(v; | ||
| + | |||
| + | |||
| + | ===== Special Functions | ||
| The fit function supports some special functions. These functions are easy to use and a little bit faster than free defined functions. The special functions can not be used together with other expressions in one row. | The fit function supports some special functions. These functions are easy to use and a little bit faster than free defined functions. The special functions can not be used together with other expressions in one row. | ||
| - | GL (Gauss-Lorentz mix curve) | + | ==== GL (Gauss-Lorentz mix curve) |
| A = position (x0) | A = position (x0) | ||
| B = height (I0) | B = height (I0) | ||
| 行 61: | 行 134: | ||
| D = Gauss-Lorentz ratio ( M ,1.0=pure Gauss, 0.0 = pure Lorentz) | D = Gauss-Lorentz ratio ( M ,1.0=pure Gauss, 0.0 = pure Lorentz) | ||
| E = unused | E = unused | ||
| - | DS (Doniach-Sunjic curve) | + | ==== DS (Doniach-Sunjic curve) |
| - | A = position | + | $$ |
| - | B = height | + | \displaystyle I(E)={\frac {\Gamma |
| - | C = width ( γ, Lorentzian FWHM) | + | $$ |
| - | D = Anderson' | + | |A| position | $E_0$| |
| - | E = unused | + | |B| height |
| - | ET (Gauss-Lorentz mix curve with exponential Tail) | + | |C| width |( γ, Lorentzian FWHM)| |
| + | |D| Anderson' | ||
| + | |E| unused | ||
| + | ==== ET (Gauss-Lorentz mix curve with exponential Tail) ==== | ||
| A = position (x0) | A = position (x0) | ||
| B = height (I0) | B = height (I0) | ||
| 行 73: | 行 150: | ||
| D = Gauss-Lorentz ratio ( M ,1.0=pure Gauss, 0.0 = pure Lorentz) | D = Gauss-Lorentz ratio ( M ,1.0=pure Gauss, 0.0 = pure Lorentz) | ||
| E = tail exponent factor ( α, -infinity - +infinity) | E = tail exponent factor ( α, -infinity - +infinity) | ||
| - | GL* (Gauss convoluted Lorentz curve) | + | ==== GL* (Gauss convoluted Lorentz curve) |
| A = position | A = position | ||
| B = height | B = height | ||
| 行 79: | 行 157: | ||
| D = Gauss-Lorentz ratio (must be set to 0.0) | D = Gauss-Lorentz ratio (must be set to 0.0) | ||
| E = Gauss FWHM (0 - +infinity) | E = Gauss FWHM (0 - +infinity) | ||
| - | DS* (Gauss convoluted Doniach-Sunjic curve) | + | ==== DS* (Gauss convoluted Doniach-Sunjic curve) |
| A = position | A = position | ||
| B = height | B = height | ||
seminar/plot_curvefit.1570679833.txt.gz · 最終更新: (外部編集)