lectures:maclaurin_exp
差分
このページの2つのバージョン間の差分を表示します。
両方とも前のリビジョン前のリビジョン次のリビジョン | 前のリビジョン | ||
lectures:maclaurin_exp [2021/02/17 12:38] – [主な関数のMaclaurin展開] kimi | lectures:maclaurin_exp [2022/08/23 13:34] (現在) – 外部編集 127.0.0.1 | ||
---|---|---|---|
行 30: | 行 30: | ||
===== 主な関数のMaclaurin展開 ===== | ===== 主な関数のMaclaurin展開 ===== | ||
- | sinx | + | ==== sinx ==== |
- | + | $$ | |
- | sinx=x−16x3+1120x5−⋯+(−1)m(2m+1)!x2m+1+⋯ | + | \sin x=x-\frac{1}{6}x^3+\frac{1}{120}x^5-\cdots+\frac{(-1)^m}{(2m+1)!}x^{2m+1}+\cdots |
- | + | $$ | |
- | $$\sin x=x-\frac{1}{6}x^3+\frac{1}{120}x^5-\cdots+\frac{(-1)^m}{(2m+1)!}x^{2m+1}+\cdots$$ | + | 収束半径は(−∞<x<∞) |
+ | ==== $\cos x$ ==== | ||
+ | $$ | ||
+ | \cos x=1-\frac{1}{2}x^2+\frac{1}{24}x^4-\frac{1}{720}x^6+\cdots+\frac{(-1)^m}{(2m)!}x^{2m}+\cdots | ||
+ | $$ | ||
+ | 収束半径は(−∞<x<∞) | ||
+ | ==== expx ==== | ||
+ | $$ | ||
+ | e^x=1+x+\frac{1}{2}x^2+\frac{1}{6}x^3+\frac{1}{24}x^4+\frac{1}{120}x^5+\frac{1}{720}x^6+\cdots+\frac{1}{n!}x^n+\cdots | ||
+ | $$ | ||
+ | 収束半径は$(-\infty< | ||
+ | ==== ln(1+x) ==== | ||
+ | $$ | ||
+ | \ln(1+x)=x-\frac{1}{2}x^2+\frac{1}{3}x^3-\frac{1}{4}x^4+\frac{1}{5}x^5+\cdots+\frac{(-1)^{n-1}}{n}x^n+\cdots | ||
+ | $$ | ||
+ | 収束半径は$(-1< | ||
+ | ==== 11−x ==== | ||
+ | $$ | ||
+ | \frac{1}{1-x}=1+x+x^2+x^3+x^4+x^5+\cdots+x^n+\cdots | ||
+ | $$ | ||
+ | 収束半径は$(-1< | ||
+ | ==== (1+x)α ==== | ||
+ | $$ | ||
+ | (1+x)^\alpha=1+\alpha x+\frac{\alpha(\alpha -1)}{2}x^2+\frac{\alpha(\alpha -1)(\alpha -2)}{6}x^3+\cdots | ||
+ | $$ | ||
+ | $$ | ||
+ | \cdots+\frac{\alpha(\alpha -1)(\alpha -2)\cdots(\alpha -n+1)}{n!}x^n+\cdots | ||
+ | $$ | ||
+ | 収束半径は(−1<x<1) | ||
+ | ==== $\displaystyle\frac{1}{\sqrt{1-x}}$ ==== | ||
+ | $$ | ||
+ | \frac{1}{\sqrt{1-x}}=1+\frac{1}{2}x+\frac{3}{8}x^2+\frac{5}{16}x^3+\cdots+\frac{(2n-1)!!}{2^nn!}x^n+\cdots | ||
+ | $$ | ||
+ | 収束半径は(−1<x≤1) |
lectures/maclaurin_exp.1613533086.txt.gz · 最終更新: 2022/08/23 13:34 (外部編集)