amath2:フーリエ変換
差分
このページの2つのバージョン間の差分を表示します。
両方とも前のリビジョン前のリビジョン次のリビジョン | 前のリビジョン | ||
amath2:フーリエ変換 [2019/07/17 14:42] – [フーリエ展開からフーリエ変換へ] kimi | amath2:フーリエ変換 [2022/08/23 13:34] (現在) – 外部編集 127.0.0.1 | ||
---|---|---|---|
行 1: | 行 1: | ||
- | ====== フーリエ変換 | + | ====== フーリエ解析 |
フーリエ展開はf(x+2L)=f(x)を満たすような周期関数を、三角関数の用いてあらわそうというものであった。この考え方は非常に有用なので周期関数でなくても同様のことができないだろうかというのがここで説明するフーリエ変換のはじまりである。実用上は単純明快で実際のデータは有限区間でしか定義されていないので、周期関数でなくても周期が非常に大きな関数のある部分だけを問題にしていると看做せばよい。この考え方をもうすこし厳密にしたのがフーリエ変換であるといえる。 | フーリエ展開はf(x+2L)=f(x)を満たすような周期関数を、三角関数の用いてあらわそうというものであった。この考え方は非常に有用なので周期関数でなくても同様のことができないだろうかというのがここで説明するフーリエ変換のはじまりである。実用上は単純明快で実際のデータは有限区間でしか定義されていないので、周期関数でなくても周期が非常に大きな関数のある部分だけを問題にしていると看做せばよい。この考え方をもうすこし厳密にしたのがフーリエ変換であるといえる。 | ||
+ | ===== フーリエ展開 ===== | ||
+ | f(x+2L)=f(x) | ||
+ | |||
+ | |∫L−Lf(x)dx|<∞ | ||
+ | |||
+ | $$ | ||
+ | f(x) = \sum_{n=-\infty}^{\infty}c_n e^{\frac{\pi}{L}nx} | ||
+ | $$ | ||
+ | ===== フーリエ変換 ===== | ||
+ | |||
===== フーリエ展開からフーリエ変換へ ===== | ===== フーリエ展開からフーリエ変換へ ===== | ||
周期2Lの周期関数f(x)のフーリエ展開は | 周期2Lの周期関数f(x)のフーリエ展開は | ||
行 19: | 行 29: | ||
そこでL→∞の極限をとることを考えよう。 | そこでL→∞の極限をとることを考えよう。 | ||
+ | |||
+ | フーリエ級数を | ||
$$ | $$ | ||
f\left( x \right) = \sum_{n = - \infty }^{-1} | f\left( x \right) = \sum_{n = - \infty }^{-1} | ||
+c_0+\sum_{n = 1 }^\infty | +c_0+\sum_{n = 1 }^\infty | ||
+ | $$ | ||
+ | のように分割して考える。kn=πLnよりk−n=−kn、およびc−n=c∗nであるから、 | ||
+ | $$ | ||
+ | \sum_{n = - \infty }^{-1} | ||
$$ | $$ | ||
以下反古 | 以下反古 | ||
+ | |||
+ | |||
+ | ===== 主なフーリエ変換 ===== | ||
+ | * [[定数関数]] | ||
+ | * sinaxx | ||
+ | * [[指数関数|e−a|x|]] | ||
+ | * ローレンツ関数 | ||
+ | * [[ガウス関数]] | ||
+ | * [[楔型(三角波)]] | ||
-- | -- |
amath2/フーリエ変換.1563342150.txt.gz · 最終更新: 2022/08/23 13:34 (外部編集)