PagesやKeynoteの挿入>方程式…
やGoogle Colaboratoryで数式を書くときは$\LaTeX$の形式で書くことになる。ここではBlahtexのmanualを基に簡単な数式の書き方を説明する。
\begin{matrix} a&b\\ c&d \end{matrix} | $\begin{matrix}a&b\\c&d\end{matrix}$ | \begin{pmatrix} a&b\\ c&d \end{pmatrix} | $\begin{pmatrix}a&b\\c&d\end{pmatrix}$ |
\begin{bmatrix} a&b\\ c&d \end{bmatrix} | $\begin{bmatrix}a&b\\c&d\end{bmatrix}$ | \begin{Bmatrix} a&b\\ c&d \end{Bmatrix} | $\begin{Bmatrix}a&b\\c&d\end{Bmatrix}$ |
\begin{vmatrix} a&b\\ c&d \end{vmatrix} | $\begin{vmatrix}a&b\\c&d\end{vmatrix}$ | \begin{Vmatrix} a&b\\ c&d \end{Vmatrix} | $\begin{Vmatrix}a&b\\c&d\end{Vmatrix}$ |
\varphi(x)=\begin{cases} \mathrm{e}^{\lambda x}&(x<0)\\ \mathrm{e}^{-\lambda x}&(x\ge 0) \end{cases} | $\varphi(x)=\begin{cases}\mathrm{e}^{\lambda x}&(x<0)\\\mathrm{e}^{-\lambda x}&(x\ge 0)\end{cases}$ |
\begin{aligned} x^2+y^2&=r^2\\ y&=\pm\sqrt{r^2-x^2} \end{aligned} | $\begin{aligned}x^2+y^2&=r^2\\y&=\pm\sqrt{r^2-x^2}\end{aligned}$ |
$\sqrt{x}$
$a\substack{a\\b\\c\\d} b$
$\overset{a}{b}$
$B \underset{a}{b}$
$\not 4$
\color{color_name}{colored_texts}
$$ \begin{matrix} \color{yellow}{yellow} \hfill& \color{red}{red} \hfill& \color{magenta}{magenta} \hfill& \color{blue}{blue} \hfill& \color{green}{green} \hfill& \color{cyan}{cyan} \hfill& \color{black}{black} \hfill& \color{white}{white}\leftarrow\text{white}& \end{matrix} $$
$$ \begin{matrix} \color{GreenYellow}{GreenYellow} \hfill& \color{Yellow}{Yellow} \hfill& \color{Goldenrod}{Goldenrod} \hfill& \color{Dandelion}{Dandelion} \hfill& \color{Apricot}{Apricot} \hfill&\\ \color{Peach}{Peach} \hfill& \color{Melon}{Melon} \hfill& \color{YellowOrange}{YellowOrange} \hfill& \color{Orange}{Orange} \hfill& \color{BurntOrange}{BurntOrange} \hfill&\\ \color{Bittersweet}{Bittersweet} \hfill& \color{RedOrange}{RedOrange} \hfill& \color{Mahogany}{Mahogany} \hfill& \color{Maroon}{Maroon} \hfill& \color{BrickRed}{BrickRed} \hfill&\\ \color{Red}{Red} \hfill& \color{OrangeRed}{OrangeRed} \hfill& \color{RubineRed}{RubineRed} \hfill& \color{WildStrawberry}{WildStrawberry} \hfill& \color{Salmon}{Salmon} \hfill&\\ \color{CarnationPink}{CarnationPink} \hfill& \color{Magenta}{Magenta} \hfill& \color{VioletRed}{VioletRed} \hfill& \color{Rhodamine}{Rhodamine} \hfill& \color{Mulberry}{Mulberry} \hfill&\\ \color{RedViolet}{RedViolet} \hfill& \color{Fuchsia}{Fuchsia} \hfill& \color{Lavender}{Lavender} \hfill& \color{Thistle}{Thistle} \hfill& \color{Orchid}{Orchid} \hfill&\\ \color{DarkOrchid}{DarkOrchid} \hfill& \color{Purple}{Purple} \hfill& \color{Plum}{Plum} \hfill& \color{Violet}{Violet} \hfill& \color{RoyalPurple}{RoyalPurple} \hfill&\\ \color{BlueViolet}{BlueViolet} \hfill& \color{Periwinkle}{Periwinkle} \hfill& \color{CadetBlue}{CadetBlue} \hfill& \color{CornflowerBlue}{CornflowerBlue} \hfill& \color{MidnightBlue}{MidnightBlue} \hfill&\\ \color{NavyBlue}{NavyBlue} \hfill& \color{RoyalBlue}{RoyalBlue} \hfill& \color{Blue}{Blue} \hfill& \color{Cerulean}{Cerulean} \hfill& \color{Cyan}{Cyan} \hfill&\\ \color{ProcessBlue}{ProcessBlue} \hfill& \color{SkyBlue}{SkyBlue} \hfill& \color{Turquoise}{Turquoise} \hfill& \color{TealBlue}{TealBlue} \hfill& \color{Aquamarine}{Aquamarine} \hfill&\\ \color{BlueGreen}{BlueGreen} \hfill& \color{Emerald}{Emerald} \hfill& \color{JungleGreen}{JungleGreen} \hfill& \color{SeaGreen}{SeaGreen} \hfill& \color{Green}{Green} \hfill&\\ \color{ForestGreen}{ForestGreen} \hfill& \color{PineGreen}{PineGreen} \hfill& \color{LimeGreen}{LimeGreen} \hfill& \color{YellowGreen}{YellowGreen} \hfill& \color{SpringGreen}{SpringGreen} \hfill&\\ \color{OliveGreen}{OliveGreen} \hfill& \color{RawSienna}{RawSienna} \hfill& \color{Sepia}{Sepia} \hfill& \color{Brown}{Brown} \hfill& \color{Tan}{Tan} \hfill&\\ \color{Gray}{Gray} \hfill& \color{Black}{Black} \hfill& \color{White}{White}\hfill& \leftarrow\text{White}\hfill& \end{matrix} $$
a b | $a b$ |
a\text{ }b | $a\text{ }b$ |
a\,b | $a\,b$ |
a\!b | $a\!b$ |
a\ b | $a\ b$ |
a\>b | $a\>b$ |
a\quad b | $a\quad b$ |
a\qquad b | $a\qquad b$ |
$\hat{a}$ $\dot{x}$ $\ddot{x}$ $\bar{d}$ $\check{e}$ $\acute{e}$ $\grave{e}$ $\vec{b}$ $\breve{i}$ $\tilde{j}$ $\widehat{aa}$ $\overline{aa}$ $\underline{aaa}$ $\widetilde{AB}$ $A\overbrace{BCDE}F$ $ABC\underbrace{DEF}GHI$ $\overleftarrow{ABC}$ $\overrightarrow{ABC}$ $\overleftrightarrow{ABC}$
$\operatorname{this}(x)$ $\operatornamewithlimits$ $\inf$ $\limsup$ $\liminf$ $\injlim$ $\projlim$ $\varlimsup$ $\varliminf$ $\varinjlim$ $\varprojlim$ $\min$ $\max$ $\gcd$ $\det$ $\Pr$ $\ker$ $\hom$ $\dim$ $\arg$ $\sin$ $\cos$ $\sec$ $\csc$ $\tan$ $\cot$ $\arcsin$ $\arccos$ $\arctan$ $\sinh$ $\cosh$ $\tanh$ $\coth$ $\log$ $\lg$ $\ln$ $\exp$ $\deg$ $a\mod b$ $\bmod$ $a \pmod b$
$\_$ $\&$ $\$$ $\#$ $\%$ $\{$ $\}$
$$ \begin{matrix} \alpha&\text{\alpha}\hfill& \beta&\text{\beta}\hfill& \gamma&\text{\gamma}\hfill& \delta&\text{\delta}\hfill& \epsilon&\text{\epsilon}\hfill\\ \varepsilon&\text{\varepsilon}\hfill& \zeta&\text{\zeta}\hfill& \eta&\text{\eta}\hfill& \vartheta&\text{\vartheta}\hfill& \theta&\text{\theta}\hfill\\ \iota&\text{\iota}\hfill& \kappa&\text{\kappa}\hfill& \varkappa&\text{\varkappa}\hfill& \lambda&\text{\lambda}\hfill& \mu&\text{\mu}\hfill\\ \nu&\text{\nu}\hfill& \pi&\text{\pi}\hfill& \varpi&\text{\varpi}\hfill& \rho&\text{\rho}\hfill& \varrho&\text{\varrho}\hfill\\ \sigma&\text{\sigma}\hfill& \varsigma&\text{\varsigma}\hfill& \tau&\text{\tau}\hfill& \upsilon&\text{\upsilon}\hfill& \phi&\text{\phi}\hfill\\ \varphi&\text{\varphi}\hfill& \chi&\text{\chi}\hfill& \psi&\text{\psi}\hfill& \omega&\text{\omega}\hfill& \xi&\text{\xi}\hfill\\ \digamma&\text{\digamma}\hfill& \Gamma&\text{\Gamma}\hfill& \Delta&\text{\Delta}\hfill& \Theta&\text{\Theta}\hfill& \Lambda&\text{\Lambda}\hfill\\ \Pi&\text{\Pi}\hfill& \Sigma&\text{\Sigma}\hfill& \Upsilon&\text{\Upsilon}\hfill& \Phi&\text{\Phi}\hfill& \Psi&\text{\Psi}\hfill\\ \Omega&\text{\Omega}\hfill& \Xi&\text{\Xi}\hfill& \end{matrix} $$
$\ast$ $\implies$ $\neg$ $\ne$ $\ge$ $\le$ $\land$ $\lor$ $\gets$ $\to$ $\vert$ $\lvert$ $\rvert$ $\Vert$ $\lVert$ $\rVert$ $\lfloor$ $\rfloor$ $\lceil$ $\rceil$ $\lbrace$ $\rbrace$ $\langle$ $\rangle$ $\lbrack$ $\rbrack$ $\aleph$ $\beth$ $\gimel$ $\daleth$ $\wp$ $\ell$ $\P$ $\imath$ $\forall$ $\exists$ $\Finv$ $\Game$ $\partial$ $\Re$ $\Im$ $\leftarrow$ $\rightarrow$ $\longleftarrow$ $\longrightarrow$ $\Leftarrow$ $\Rightarrow$ $\Longleftarrow$ $\Longrightarrow$ $\mapsto$ $\longmapsto$ $\leftrightarrow$ $\Leftrightarrow$ $\longleftrightarrow$ $\Longleftrightarrow$ $\uparrow$ $\Uparrow$ $\downarrow$ $\Downarrow$ $\updownarrow$ $\Updownarrow$ $\searrow$ $\nearrow$ $\swarrow$ $\nwarrow$ $\hookrightarrow$ $\hookleftarrow$ $\upharpoonright$ $\upharpoonleft$ $\downharpoonright$ $\downharpoonleft$ $\rightharpoonup$ $\rightharpoondown$ $\leftharpoonup$ $\leftharpoondown$ $\nleftarrow$ $\nrightarrow$ $\supset$ $\subset$ $\supseteq$ $\subseteq$ $\sqsupset$ $\sqsubset$ $\sqsupseteq$ $\sqsubseteq$ $\supsetneq$ $\subsetneq$ $\in$ $\ni$ $\notin$ $\iff$ $\mid$ $\sim$ $\simeq$ $\approx$ $\propto$ $\equiv$ $\cong$ $\neq$ $\ll$ $\gg$ $\geq$ $\leq$ $\triangleleft$ $\triangleright$ $\trianglelefteq$ $\trianglerighteq$ $\models$ $\vdash$ $\Vdash$ $\vDash$ $\lesssim$ $\nless$ $\ngeq$ $\nleq$ $\times$ $\div$ $\wedge$ $\vee$ $\oplus$ $\otimes$ $\cap$ $\cup$ $\sqcap$ $\sqcup$ $\smile$ $\frown$ $\smallsmile$ $\smallfrown$ $\setminus$ $\smallsetminus$ $\And$ $\star$ $\triangle$ $\wr$ $\infty$ $\circ$ $\hbar$ $\lnot$ $\nabla$ $\prime$ $\backslash$ $\pm$ $\mp$ $\emptyset$ $\varnothing$ $\S$ $\angle$ $\colon$ $\Diamond$ $\nmid$ $\square$ $\Box$ $\checkmark$ $\complement$ $\eth$ $\hslash$ $\mho$ $\flat$ $\sharp$ $\natural$ $\bullet$ $\dagger$ $\ddagger$ $\clubsuit$ $\spadesuit$ $\heartsuit$ $\diamondsuit$ $\top$ $\bot$ $\perp$ $\ldots$ $\cdot$ $\cdots$ $\vdots$ $\ddots$ $\dots$ $\dotsb$ $\circledR$ $\yen$ $\maltese$ $\circledS$ $\Bbbk$ $\jmath$ $\ulcorner$ $\urcorner$ $\llcorner$ $\lrcorner$ $\dashrightarrow$ $\dashleftarrow$ $\backprime$ $\vartriangle$ $\blacktriangle$ $\triangledown$ $\blacktriangledown$ $\blacksquare$ $\lozenge$ $\blacklozenge$ $\bigstar$ $\sphericalangle$ $\measuredangle$ $\dotplus$ $\ltimes$ $\rtimes$ $\Cap$ $\leftthreetimes$ $\rightthreetimes$ $\Cup$ $\barwedge$ $\curlywedge$ $\veebar$ $\curlyvee$ $\doublebarwedge$ $\boxminus$ $\circleddash$ $\boxtimes$ $\circledast$ $\boxdot$ $\circledcirc$ $\boxplus$ $\centerdot$ $\divideontimes$ $\intercal$ $\leqq$ $\geqq$ $\leqslant$ $\geqslant$ $\eqslantless$ $\eqslantgtr$ $\gtrsim$ $\lessapprox$ $\gtrapprox$ $\approxeq$ $\eqsim$ $\lessdot$ $\gtrdot$ $\lll$ $\ggg$ $\lessgtr$ $\gtrless$ $\lesseqgtr$ $\gtreqless$ $\lesseqqgtr$ $\gtreqqless$ $\doteqdot$ $\eqcirc$ $\risingdotseq$ $\circeq$ $\fallingdotseq$ $\triangleq$ $\backsim$ $\thicksim$ $\backsimeq$ $\thickapprox$ $\subseteqq$ $\supseteqq$ $\Subset$ $\Supset$ $\preccurlyeq$ $\succcurlyeq$ $\curlyeqprec$ $\curlyeqsucc$ $\precsim$ $\succsim$ $\precapprox$ $\succapprox$ $\Vvdash$ $\shortmid$ $\shortparallel$ $\bumpeq$ $\between$ $\Bumpeq$ $\varpropto$ $\backepsilon$ $\blacktriangleleft$ $\blacktriangleright$ $\therefore$ $\because$ $\ngtr$ $\nleqslant$ $\ngeqslant$ $\nleqq$ $\ngeqq$ $\lneqq$ $\gneqq$ $\lvertneqq$ $\gvertneqq$ $\lnsim$ $\gnsim$ $\lnapprox$ $\gnapprox$ $\nprec$ $\nsucc$ $\npreceq$ $\nsucceq$ $\precneqq$ $\succneqq$ $\precnsim$ $\succnsim$ $\precnapprox$ $\succnapprox$ $\nsim$ $\ncong$ $\nshortmid$ $\nshortparallel$ $\nmid$ $\nparallel$ $\nvdash$ $\nvDash$ $\nVdash$ $\nVDash$ $\ntriangleleft$ $\ntriangleright$ $\ntrianglelefteq$ $\ntrianglerighteq$ $\nsubseteq$ $\nsupseteq$ $\nsubseteqq$ $\nsupseteqq$ $\subsetneq$ $\supsetneq$ $\varsubsetneq$ $\varsupsetneq$ $\subsetneqq$ $\supsetneqq$ $\varsubsetneqq$ $\varsupsetneqq$ $\leftleftarrows$ $\rightrightarrows$ $\leftrightarrows$ $\rightleftarrows$ $\Lleftarrow$ $\Rrightarrow$ $\twoheadleftarrow$ $\twoheadrightarrow$ $\leftarrowtail$ $\rightarrowtail$ $\looparrowleft$ $\looparrowright$ $\leftrightharpoons$ $\rightleftharpoons$ $\curvearrowleft$ $\curvearrowright$ $\circlearrowleft$ $\circlearrowright$ $\Lsh$ $\Rsh$ $\upuparrows$ $\downdownarrows$ $\multimap$ $\rightsquigarrow$ $\leftrightsquigarrow$ $\nLeftarrow$ $\nRightarrow$ $\nleftrightarrow$ $\nLeftrightarrow$ $\pitchfork$ $\nexists$ $\lhd$ $\rhd$ $\unlhd$ $\unrhd$ $\leadsto$ $\uplus$ $\diamond$ $\bigtriangleup$ $\bigtriangledown$ $\ominus$ $\oslash$ $\odot$ $\bigcirc$ $\amalg$ $\prec$ $\succ$ $\preceq$ $\succeq$ $\dashv$ $\asymp$ $\doteq$ $\parallel$ $\bowtie$ $\surd$ $\doublecap$ $\restriction$ $\llless$ $\gggtr$ $\Doteq$ $\doublecup$ $\dasharrow$ $\vartriangleleft$ $\vartriangleright$ $\Join$
$\sum$ $\prod$ $\int$ $\iint$ $\iiint$ $\iiiint$ $\oint$ $\bigcap$ $\bigodot$ $\bigcup$ $\bigotimes$ $\coprod$ $\bigsqcup$ $\bigoplus$ $\bigvee$ $\biguplus$ $\bigwedge$