R_\theta = \begin{bmatrix} \cos \theta & - \sin \theta \\ \sin \theta & \phantom{-} \cos \theta \end{bmatrix}
$$ R_\theta = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \phantom{-} \cos \theta \end{bmatrix} $$
e^{-a|x|} = \begin{cases} e^{ax} & \text{if } x < 0 \\ e^{-ax} & \text{if } x \geq 0 \end{cases}
$$ e^{-a|x|} = \begin{cases} e^{ax} & \text{if } x < 0 \\ e^{-ax} & \text{if } x \geq 0 \end{cases} $$
$$ \nabla \times \overrightarrow{\mathbf{B}} - \frac{1}{C} \frac{\delta \overrightarrow{\mathbf{E}}}{\delta t} = 4\pi \rho $$
$$ {\cal H}=\mathcal{H} $$