ad2dx2f(x)+bddxf(x)+cf(x)=ah(x)
at2+bt+c=a(t−α)(t−β)
d2dx2f(x)−(α+β)ddxf(x)+αβf(x)=h(x)
d2dx2f(x)−αddxf(x)−βddxf(x)+αβf(x)=h(x)
ddx(ddxf(x)−αf(x))−β(ddxf(x)−αf(x))=h(x)
ddxf(x)−αf(x)=g(x)
ddxg(x)−βg(x)=h(x)
ddxg(x)−βg(x)=0
1g(x)ddxg(x)=β
∫1g(x)ddxg(x)dx=∫βdx
lng(x)+C=βx+C′
g(x)=Ceβx
g(x)=u(x)eβx
ddx(u(x)eβx)−βu(x)eβx=h(x)
eβxddxu(x)+βu(x)eβx−βu(x)eβx=h(x)
ddxu(x)=e−βxh(x)
u(x)=∫e−βxh(x)dx
g(x)=eβx∫e−βxh(x)dx+Ceβx
f(x)=eαx∫e−αxg(x)dx+Deαx=eαx∫e−αx(eβx∫e−βxh(x)dx+Ceβx)dx+Deαx
=eαx∫(e(β−α)x∫e−βxh(x)dx+Ce(β−α)x)dx+Deαx
=eαx∫(e(β−α)x∫e−βxh(x)dx)dx+Ceαx∫e(β−α)xdx+Deαx